Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A parameter refinement method for Ptychography based on Deep Learning concepts (2105.08058v2)

Published 18 May 2021 in eess.IV, cs.CV, cs.NA, and math.NA

Abstract: X-ray Ptychography is an advanced computational microscopy technique which is delivering exceptionally detailed quantitative imaging of biological and nanotechnology specimens. However coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability. In this work we formally introduced these actors, solving the whole reconstruction as an optimisation problem. A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction. Automatic procedures are indeed crucial to reduce the time for a reliable analysis, which has a significant impact on all the fields that use this kind of microscopy. We implemented our algorithm in our software framework, SciComPty, releasing it as open-source. We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.

Citations (13)

Summary

We haven't generated a summary for this paper yet.