Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Spectral-Galerkin Method on An Arbitrary Tetrahedron Using Generalized Koornwinder Polynomials (2105.07547v1)

Published 16 May 2021 in math.NA and cs.NA

Abstract: In this paper, we propose a sparse spectral-Galerkin approximation scheme for solving the second-order partial differential equations on an arbitrary tetrahedron. Generalized Koornwinder polynomials are introduced on the reference tetrahedron as basis functions with their various recurrence relations and differentiation properties being explored. The method leads to well-conditioned and sparse linear systems whose entries can either be calculated directly by the orthogonality of the generalized Koornwinder polynomials for differential equations with constant coefficients or be evaluated efficiently via our recurrence algorithm for problems with variable coefficients. Clenshaw algorithms for the evaluation of any polynomial in an expansion of the generalized Koornwinder basis are also designed to boost the efficiency of the method. Finally, numerical experiments are carried out to illustrate the effectiveness of the proposed Koornwinder spectral method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.