Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SLGPT: Using Transfer Learning to Directly Generate Simulink Model Files and Find Bugs in the Simulink Toolchain (2105.07465v3)

Published 16 May 2021 in cs.SE and cs.LG

Abstract: Finding bugs in a commercial cyber-physical system (CPS) development tool such as Simulink is hard as its codebase contains millions of lines of code and complete formal language specifications are not available. While deep learning techniques promise to learn such language specifications from sample models, deep learning needs a large number of training data to work well. SLGPT addresses this problem by using transfer learning to leverage the powerful Generative Pre-trained Transformer 2 (GPT-2) model, which has been pre-trained on a large set of training data. SLGPT adapts GPT-2 to Simulink with both randomly generated models and models mined from open-source repositories. SLGPT produced Simulink models that are both more similar to open-source models than its closest competitor, DeepFuzzSL, and found a super-set of the Simulink development toolchain bugs found by DeepFuzzSL.

Citations (13)

Summary

We haven't generated a summary for this paper yet.