Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a new method for the stochastic perturbation of the disease transmission coefficient in SIS Models (2105.07437v1)

Published 16 May 2021 in math.PR

Abstract: In this study we investigate a novel approach to stochastically perturb the disease transmission coefficient, which is a key parameter in susceptible-infected-susceptible (SIS) models. Motivated by the papers [2] and [5], we perturb the disease transmission coefficient with a Gaussian white noise, formally modelled as the time derivative of a mean reverting Ornstein-Uhlenbeck process. We remark that, thanks to a suitable representation of the solution to the deterministic SIS model, this perturbation is rigorous and supported by a Wong-Zakai approximation argument that consists in smoothing the singular Gaussian white noise and then taking limit of the solution from the approximated model. We prove that the stochastic version of the classic SIS model obtained this way preserves a crucial feature of the deterministic equation: the reproduction number dictating the two possible asymptotic regimes for the infection, i.e. extinction and persistence, remains unchanged. We then identify the class of perturbing noises for which this property holds and propose simple sufficient conditions for that. All the theoretical discoveries are illustrated and discussed with the help of several numerical simulations.

Summary

We haven't generated a summary for this paper yet.