Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Posterior contraction for deep Gaussian process priors (2105.07410v3)

Published 16 May 2021 in math.ST and stat.TH

Abstract: We study posterior contraction rates for a class of deep Gaussian process priors applied to the nonparametric regression problem under a general composition assumption on the regression function. It is shown that the contraction rates can achieve the minimax convergence rate (up to $\log n$ factors), while being adaptive to the underlying structure and smoothness of the target function. The proposed framework extends the Bayesian nonparametric theory for Gaussian process priors.

Summary

We haven't generated a summary for this paper yet.