Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One for All: An End-to-End Compact Solution for Hand Gesture Recognition (2105.07143v1)

Published 15 May 2021 in cs.CV

Abstract: The HGR is a quite challenging task as its performance is influenced by various aspects such as illumination variations, cluttered backgrounds, spontaneous capture, etc. The conventional CNN networks for HGR are following two stage pipeline to deal with the various challenges: complex signs, illumination variations, complex and cluttered backgrounds. The existing approaches needs expert expertise as well as auxiliary computation at stage 1 to remove the complexities from the input images. Therefore, in this paper, we proposes an novel end-to-end compact CNN framework: fine grained feature attentive network for hand gesture recognition (Fit-Hand) to solve the challenges as discussed above. The pipeline of the proposed architecture consists of two main units: FineFeat module and dilated convolutional (Conv) layer. The FineFeat module extracts fine grained feature maps by employing attention mechanism over multiscale receptive fields. The attention mechanism is introduced to capture effective features by enlarging the average behaviour of multi-scale responses. Moreover, dilated convolution provides global features of hand gestures through a larger receptive field. In addition, integrated layer is also utilized to combine the features of FineFeat module and dilated layer which enhances the discriminability of the network by capturing complementary context information of hand postures. The effectiveness of Fit- Hand is evaluated by using subject dependent (SD) and subject independent (SI) validation setup over seven benchmark datasets: MUGD-I, MUGD-II, MUGD-III, MUGD-IV, MUGD-V, Finger Spelling and OUHANDS, respectively. Furthermore, to investigate the deep insights of the proposed Fit-Hand framework, we performed ten ablation study.

Citations (3)

Summary

We haven't generated a summary for this paper yet.