Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hypothesis Testing Approach to Nonstationary Source Separation (2105.06958v2)

Published 14 May 2021 in eess.SP and cs.LG

Abstract: The extraction of nonstationary signals from blind and semi-blind multivariate observations is a recurrent problem. Numerous algorithms have been developed for this problem, which are based on the exact or approximate joint diagonalization of second or higher order cumulant matrices/tensors of multichannel data. While a great body of research has been dedicated to joint diagonalization algorithms, the selection of the diagonalized matrix/tensor set remains highly problem-specific. Herein, various methods for nonstationarity identification are reviewed and a new general framework based on hypothesis testing is proposed, which results in a classification/clustering perspective to semi-blind source separation of nonstationary components. The proposed method is applied to noninvasive fetal ECG extraction, as case study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.