Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Greedy Algorithm is \emph{not} Optimal for On-Line Edge Coloring (2105.06944v1)

Published 14 May 2021 in cs.DS

Abstract: Nearly three decades ago, Bar-Noy, Motwani and Naor showed that no online edge-coloring algorithm can edge color a graph optimally. Indeed, their work, titled "the greedy algorithm is optimal for on-line edge coloring", shows that the competitive ratio of $2$ of the na\"ive greedy algorithm is best possible online. However, their lower bound required bounded-degree graphs, of maximum degree $\Delta = O(\log n)$, which prompted them to conjecture that better bounds are possible for higher-degree graphs. While progress has been made towards resolving this conjecture for restricted inputs and arrivals or for random arrival orders, an answer for fully general \emph{adversarial} arrivals remained elusive. We resolve this thirty-year-old conjecture in the affirmative, presenting a $(1.9+o(1))$-competitive online edge coloring algorithm for general graphs of degree $\Delta = \omega(\log n)$ under vertex arrivals. At the core of our results, and of possible independent interest, is a new online algorithm which rounds a fractional bipartite matching $x$ online under vertex arrivals, guaranteeing that each edge $e$ is matched with probability $(1/2+c)\cdot x_e$, for a constant $c>0.027$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Amin Saberi (57 papers)
  2. David Wajc (31 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.