Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Policy Optimization in Dynamic Bayesian Network Hybrid Models of Biomanufacturing Processes (2105.06543v3)

Published 13 May 2021 in cs.AI and cs.LG

Abstract: Biopharmaceutical manufacturing is a rapidly growing industry with impact in virtually all branches of medicines. Biomanufacturing processes require close monitoring and control, in the presence of complex bioprocess dynamics with many interdependent factors, as well as extremely limited data due to the high cost of experiments as well as the novelty of personalized bio-drugs. We develop a novel model-based reinforcement learning framework that can achieve human-level control in low-data environments. The model uses a dynamic Bayesian network to capture causal interdependencies between factors and predict how the effects of different inputs propagate through the pathways of the bioprocess mechanisms. This enables the design of process control policies that are both interpretable and robust against model risk. We present a computationally efficient, provably convergence stochastic gradient method for optimizing such policies. Validation is conducted on a realistic application with a multi-dimensional, continuous state variable.

Citations (6)

Summary

We haven't generated a summary for this paper yet.