Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new perspective on low-rank optimization (2105.05947v2)

Published 12 May 2021 in math.OC, cs.LG, and stat.ML

Abstract: A key question in many low-rank problems throughout optimization, machine learning, and statistics is to characterize the convex hulls of simple low-rank sets and judiciously apply these convex hulls to obtain strong yet computationally tractable convex relaxations. We invoke the matrix perspective function - the matrix analog of the perspective function - and characterize explicitly the convex hull of epigraphs of simple matrix convex functions under low-rank constraints. Further, we combine the matrix perspective function with orthogonal projection matrices-the matrix analog of binary variables which capture the row-space of a matrix-to develop a matrix perspective reformulation technique that reliably obtains strong relaxations for a variety of low-rank problems, including reduced rank regression, non-negative matrix factorization, and factor analysis. Moreover, we establish that these relaxations can be modeled via semidefinite constraints and thus optimized over tractably. The proposed approach parallels and generalizes the perspective reformulation technique in mixed-integer optimization and leads to new relaxations for a broad class of problems.

Citations (14)

Summary

We haven't generated a summary for this paper yet.