Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Consensual Collaborative Learning Method for Remote Sensing Image Classification Under Noisy Multi-Labels (2105.05496v2)

Published 12 May 2021 in cs.CV and eess.IV

Abstract: Collecting a large number of reliable training images annotated by multiple land-cover class labels in the framework of multi-label classification is time-consuming and costly in remote sensing (RS). To address this problem, publicly available thematic products are often used for annotating RS images with zero-labeling-cost. However, such an approach may result in constructing a training set with noisy multi-labels, distorting the learning process. To address this problem, we propose a Consensual Collaborative Multi-Label Learning (CCML) method. The proposed CCML identifies, ranks and corrects training images with noisy multi-labels through four main modules: 1) discrepancy module; 2) group lasso module; 3) flipping module; and 4) swap module. The discrepancy module ensures that the two networks learn diverse features, while obtaining the same predictions. The group lasso module detects the potentially noisy labels by estimating the label uncertainty based on the aggregation of two collaborative networks. The flipping module corrects the identified noisy labels, whereas the swap module exchanges the ranking information between the two networks. The experimental results confirm the success of the proposed CCML under high (synthetically added) multi-label noise rates. The code of the proposed method is publicly available at https://noisy-labels-in-rs.org

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ahmet Kerem Aksoy (3 papers)
  2. Mahdyar Ravanbakhsh (23 papers)
  3. Tristan Kreuziger (3 papers)
  4. Begum Demir (2 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.