Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogeneous vector bundles and $G$-equivariant convolutional neural networks (2105.05400v1)

Published 12 May 2021 in cs.LG, math.RT, and stat.ML

Abstract: $G$-equivariant convolutional neural networks (GCNNs) is a geometric deep learning model for data defined on a homogeneous $G$-space $\mathcal{M}$. GCNNs are designed to respect the global symmetry in $\mathcal{M}$, thereby facilitating learning. In this paper, we analyze GCNNs on homogeneous spaces $\mathcal{M} = G/K$ in the case of unimodular Lie groups $G$ and compact subgroups $K \leq G$. We demonstrate that homogeneous vector bundles is the natural setting for GCNNs. We also use reproducing kernel Hilbert spaces to obtain a precise criterion for expressing $G$-equivariant layers as convolutional layers. This criterion is then rephrased as a bandwidth criterion, leading to even stronger results for some groups.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jimmy Aronsson (3 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.