Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReflectNet -- A Generative Adversarial Method for Single Image Reflection Suppression (2105.05216v1)

Published 11 May 2021 in eess.IV and cs.CV

Abstract: Taking pictures through glass windows almost always produces undesired reflections that degrade the quality of the photo. The ill-posed nature of the reflection removal problem reached the attention of many researchers for more than decades. The main challenge of this problem is the lack of real training data and the necessity of generating realistic synthetic data. In this paper, we proposed a single image reflection removal method based on context understanding modules and adversarial training to efficiently restore the transmission layer without reflection. We also propose a complex data generation model in order to create a large training set with various type of reflections. Our proposed reflection removal method outperforms state-of-the-art methods in terms of PSNR and SSIM on the SIR benchmark dataset.

Summary

We haven't generated a summary for this paper yet.