Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Bayes Coding Algorithm for the Non-Stationary Source in Which Context Tree Model Varies from Interval to Interval (2105.05163v2)

Published 11 May 2021 in cs.IT and math.IT

Abstract: The context tree source is a source model in which the occurrence probability of symbols is determined from a finite past sequence, and is a broader class of sources that includes i.i.d. and Markov sources. The proposed source model in this paper represents that a subsequence in each interval is generated from a different context tree model. The Bayes code for such sources requires weighting of the posterior probability distributions for the change patterns of the context tree source and for all possible context tree models. Therefore, the challenge is how to reduce this exponential order computational complexity. In this paper, we assume a special class of prior probability distribution of change patterns and context tree models, and propose an efficient Bayes coding algorithm whose computational complexity is the polynomial order.

Citations (3)

Summary

We haven't generated a summary for this paper yet.