Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The scale transformed power prior for use with historical data from a different outcome model (2105.05157v1)

Published 11 May 2021 in stat.ME

Abstract: We develop the scale transformed power prior for settings where historical and current data involve different data types, such as binary and continuous data, respectively. This situation arises often in clinical trials, for example, when historical data involve binary responses and the current data involve time-to-event or some other type of continuous or discrete outcome. The power prior proposed by Ibrahim and Chen (2000) does not address the issue of different data types. Herein, we develop a new type of power prior, which we call the scale transformed power prior (straPP). The straPP is constructed by transforming the power prior for the historical data by rescaling the parameter using a function of the Fisher information matrices for the historical and current data models, thereby shifting the scale of the parameter vector from that of the historical to that of the current data. Examples are presented to motivate the need for a scale transformation and simulation studies are presented to illustrate the performance advantages of the straPP over the power prior and other informative and non-informative priors. A real dataset from a clinical trial undertaken to study a novel transitional care model for stroke survivors is used to illustrate the methodology.

Summary

We haven't generated a summary for this paper yet.