Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representative community divisions of networks (2105.04612v2)

Published 10 May 2021 in cs.SI

Abstract: Methods for detecting community structure in networks typically aim to identify a single best partition of network nodes into communities, often by optimizing some objective function, but in real-world applications there may be many competitive partitions with objective scores close to the global optimum and one can obtain a more informative picture of the community structure by examining a representative set of such high-scoring partitions than by looking at just the single optimum. However, such a set can be difficult to interpret since its size can easily run to hundreds or thousands of partitions. In this paper we present a method for analyzing large partition sets by dividing them into groups of similar partitions and then identifying an archetypal partition as a representative of each group. The resulting set of archetypal partitions provides a succinct, interpretable summary of the form and variety of community structure in any network. We demonstrate the method on a range of example networks.

Citations (17)

Summary

We haven't generated a summary for this paper yet.