Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A High Order Compact Finite Difference Scheme for Elliptic Interface Problems with Discontinuous and High-Contrast Coefficients (2105.04600v1)

Published 10 May 2021 in math.NA and cs.NA

Abstract: The elliptic interface problems with discontinuous and high-contrast coefficients appear in many applications and often lead to huge condition numbers of the corresponding linear systems. Thus, it is highly desired to construct high order schemes to solve the elliptic interface problems with discontinuous and high-contrast coefficients. Let $\Gamma$ be a smooth curve inside a rectangular region $\Omega$. In this paper, we consider the elliptic interface problem $-\nabla\cdot (a \nabla u)=f$ in $\Omega\setminus \Gamma$ with Dirichlet boundary conditions, where the coefficient $a$ and the source term $f$ are smooth in $\Omega\setminus \Gamma$ and the two nonzero jump condition functions $[u]$ and $[a\nabla u\cdot \vec{n}]$ across $\Gamma$ are smooth along $\Gamma$. To solve such elliptic interface problems, we propose a high order compact finite difference scheme for numerically computing both the solution $u$ and the gradient $\nabla u$ on uniform Cartesian grids without changing coordinates into local coordinates. Our numerical experiments confirm the fourth order accuracy for computing the solution $u$, the gradient $\nabla u$ and the velocity $a \nabla u$ of the proposed compact finite difference scheme on uniform meshes for the elliptic interface problems with discontinuous and high-contrast coefficients.

Citations (12)

Summary

We haven't generated a summary for this paper yet.