Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Typical Non-Linear Code over Large Alphabets (2105.04378v2)

Published 10 May 2021 in cs.IT, math.CO, and math.IT

Abstract: We consider the problem of describing the typical (possibly) non-linear code of minimum distance bounded from below over a large alphabet. We concentrate on block codes with the Hamming metric and on subspace codes with the injection metric. In sharp contrast with the behavior of linear block codes, we show that the typical non-linear code in the Hamming metric of cardinality $q{n-d+1}$ is far from having minimum distance $d$, i.e., from being MDS. We also give more precise results about the asymptotic proportion of block codes with good distance properties within the set of codes having a certain cardinality. We then establish the analogous results for subspace codes with the injection metric, showing also an application to the theory of partial spreads in finite geometry.

Citations (1)

Summary

We haven't generated a summary for this paper yet.