Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arbitrary high-order linear structure-preserving schemes for the regularized long-wave equation (2105.03930v2)

Published 9 May 2021 in math.NA and cs.NA

Abstract: In this paper, a class of arbitrarily high-order linear momentum-preserving and energy-preserving schemes are proposed, respectively, for solving the regularized long-wave equation. For the momentum-preserving scheme, the key idea is based on the extrapolation/prediction-correction technique and the symplectic Runge-Kutta method in time, together with the standard Fourier pseudo-spectral method in space. We show that the scheme is linear, high-order, unconditionally stable and preserves the discrete momentum of the system. For the energy-preserving scheme, it is mainly based on the energy quadratization approach and the analogous linearized strategy used in the construction of the linear momentum-preserving scheme. The proposed scheme is linear, high-order and can preserve a discrete quadratic energy exactly. Numerical results are addressed to demonstrate the accuracy and efficiency of the proposed scheme.

Citations (2)

Summary

We haven't generated a summary for this paper yet.