Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parametric binomial sums involving harmonic numbers (2105.03927v1)

Published 9 May 2021 in math.NT and math.CA

Abstract: We present explicit formulas for the following family of parametric binomial sums involving harmonic numbers for $p=0,1,2$ and $|t|\leq1$. $$ \sum_{k=1}{\infty}\frac{H_{k-1}tk}{kp\binom{n+k}{k}}\quad \mbox{and}\quad \sum_{k=1}{\infty}\frac{tk}{kp\binom{n+k}{k}}. $$ We also generalize the following relation between the Stirling numbers of the first kind and the Riemann zeta function to polygamma function and give some applications. $$ \zeta(n+1)=\sum_{k=n}{\infty}\frac{s(k,n)}{kk!}, \quad n=1,2,3,... . $$ As examples, \begin{equation*} \zeta(3)=\frac{1}{7}\sum_{k=1}{\infty}\frac{H_{k-1}4k}{k2\binom{2k}{k}},\quad \mbox{and}\quad \zeta(3)=\frac{8}{7}+\frac{1}{7}\sum_{k=1}{\infty}\frac{H_{k-1}4k}{k2(2k+1)\binom{2k}{k}}, \end{equation*} which are new series representations for the Ap\'{e}ry constant $\zeta(3)$.

Summary

We haven't generated a summary for this paper yet.