Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous representations of intents for dialogue systems (2105.03716v1)

Published 8 May 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Intent modelling has become an important part of modern dialogue systems. With the rapid expansion of practical dialogue systems and virtual assistants, such as Amazon Alexa, Apple Siri, and Google Assistant, the interest has only increased. However, up until recently the focus has been on detecting a fixed, discrete, number of seen intents. Recent years have seen some work done on unseen intent detection in the context of zero-shot learning. This paper continues the prior work by proposing a novel model where intents are continuous points placed in a specialist Intent Space that yields several advantages. First, the continuous representation enables to investigate relationships between the seen intents. Second, it allows any unseen intent to be reliably represented given limited quantities of data. Finally, this paper will show how the proposed model can be augmented with unseen intents without retraining any of the seen ones. Experiments show that the model can reliably add unseen intents with a high accuracy while retaining a high performance on the seen intents.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sindre André Jacobsen (1 paper)
  2. Anton Ragni (22 papers)

Summary

We haven't generated a summary for this paper yet.