Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How To Train Your Program: a Probabilistic Programming Pattern for Bayesian Learning From Data (2105.03650v2)

Published 8 May 2021 in cs.LG

Abstract: We present a Bayesian approach to machine learning with probabilistic programs. In our approach, training on available data is implemented as inference on a hierarchical model. The posterior distribution of model parameters is then used to \textit{stochastically condition} a complementary model, such that inference on new data yields the same posterior distribution of latent parameters corresponding to the new data as inference on a hierachical model on the combination of both previously available and new data, at a lower computation cost. We frame the approach as a design pattern of probabilistic programming referred to herein as `stump and fungus', and evaluate realization of the pattern on case studies.

Summary

We haven't generated a summary for this paper yet.