Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Latent Space Tuning for Non-Stationary Distributions (2105.03584v4)

Published 8 May 2021 in stat.ML, cs.LG, and physics.acc-ph

Abstract: Powerful deep learning tools, such as convolutional neural networks (CNN), are able to learn the input-output relationships of large complicated systems directly from data. Encoder-decoder deep CNNs are able to extract features directly from images, mix them with scalar inputs within a general low-dimensional latent space, and then generate new complex 2D outputs which represent complex physical phenomenon. One important challenge faced by deep learning methods is large non-stationary systems whose characteristics change quickly with time for which re-training is not feasible. In this paper we present a method for adaptive tuning of the low-dimensional latent space of deep encoder-decoder style CNNs based on real-time feedback to quickly compensate for unknown and fast distribution shifts. We demonstrate our approach for predicting the properties of a time-varying charged particle beam in a particle accelerator whose components (accelerating electric fields and focusing magnetic fields) are also quickly changing with time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.