Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural 3D Scene Compression via Model Compression (2105.03120v1)

Published 7 May 2021 in cs.CV and cs.LG

Abstract: Rendering 3D scenes requires access to arbitrary viewpoints from the scene. Storage of such a 3D scene can be done in two ways; (1) storing 2D images taken from the 3D scene that can reconstruct the scene back through interpolations, or (2) storing a representation of the 3D scene itself that already encodes views from all directions. So far, traditional 3D compression methods have focused on the first type of storage and compressed the original 2D images with image compression techniques. With this approach, the user first decodes the stored 2D images and then renders the 3D scene. However, this separated procedure is inefficient since a large amount of 2D images have to be stored. In this work, we take a different approach and compress a functional representation of 3D scenes. In particular, we introduce a method to compress 3D scenes by compressing the neural networks that represent the scenes as neural radiance fields. Our method provides more efficient storage of 3D scenes since it does not store 2D images -- which are redundant when we render the scene from the neural functional representation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.