Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sobolev space theory for the Stochastic Partial Differential Equations with space-time non-local operators (2105.03013v2)

Published 7 May 2021 in math.PR

Abstract: We deal with the Sobolev space theory for the stochastic partial differential equation (SPDE) driven by Wiener processes $$ \partial_{t}{\alpha}u=\left( \phi(\Delta) u +f(u) \right) + \partial_t\beta \sum_{k=1}\infty \int_0t gk(u)\,dw_sk, \quad t>0, x\in \mathbb{R}d; \,\,\, u(0,\cdot)=u_0 $$ as well as the SPDE driven by space-time white noise $$ \partial{\alpha}_{t}u=\phi(\Delta)u + f(u) + \partial{\beta-1}_{t}h(u) \dot{W}, \quad t>0,x\in \mathbb{R}d; \quad u(0,\cdot)=u_{0}. $$ Here, $\alpha\in (0,1), \beta\in (-\infty, \alpha+1/2)$, ${w_tk : k=1,2,\cdots}$ is a family of independent one-dimensional Wiener processes, and $\dot{W}$ is a space-time white noise defined on $[0,\infty)\times \mathbb{R}d$. The time non-local operator $\partial_{t}{\gamma}$ denotes the Caputo fractional derivative if $\gamma>0$ and the Riemann-Liouville fractional integral if $\gamma\leq0$. The the spatial non-local operator $\phi(\Delta)$ is a type of integro-differential operator whose symbol is $-\phi(|\xi|2)$, where $\phi$ is a Bernstein function satisfying \begin{equation*} \kappa_0\left(\frac{R}{r}\right){\delta_{0}} \leq \frac{\phi(R)}{\phi(r)}, \qquad \forall\,\, 0<r<R<\infty \end{equation*} with some constants $\kappa_0\>0$ and $\delta_0\in (0,1]$. We prove the uniqueness and existence results in Sobolev spaces, and obtain the maximal regularity results of solutions.

Summary

We haven't generated a summary for this paper yet.