Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SparseConvMIL: Sparse Convolutional Context-Aware Multiple Instance Learning for Whole Slide Image Classification (2105.02726v2)

Published 6 May 2021 in cs.CV and cs.LG

Abstract: Multiple instance learning (MIL) is the preferred approach for whole slide image classification. However, most MIL approaches do not exploit the interdependencies of tiles extracted from a whole slide image, which could provide valuable cues for classification. This paper presents a novel MIL approach that exploits the spatial relationship of tiles for classifying whole slide images. To do so, a sparse map is built from tiles embeddings, and is then classified by a sparse-input CNN. It obtained state-of-the-art performance over popular MIL approaches on the classification of cancer subtype involving 10000 whole slide images. Our results suggest that the proposed approach might (i) improve the representation learning of instances and (ii) exploit the context of instance embeddings to enhance the classification performance. The code of this work is open-source at {github censored for review}.

Citations (17)

Summary

We haven't generated a summary for this paper yet.