Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Development and Application of Sentiment Analysis Tools in Software Engineering: A Systematic Literature Review (2105.02703v1)

Published 6 May 2021 in cs.SE

Abstract: Software development is a collaborative task and, hence, involves different persons. Research has shown the relevance of social aspects in the development team for a successful and satisfying project closure. Especially the mood of a team has been proven to be of particular importance. Thus, project managers or project leaders want to be aware of situations in which negative mood is present to allow for interventions. So-called sentiment analysis tools offer a way to determine the mood based on text-based communication. In this paper, we present the results of a systematic literature review of sentiment analysis tools developed for or applied in the context of software engineering. Our results summarize insights from 80 papers with respect to (1) the application domain, (2) the purpose, (3) the used data sets, (4) the approaches for developing sentiment analysis tools and (5) the difficulties researchers face when applying sentiment analysis in the context of software projects. According to our results, sentiment analysis is frequently applied to open-source software projects, and most tools are based on support-vector machines. Despite the frequent use of sentiment analysis in software engineering, there are open issues, e.g., regarding the identification of irony or sarcasm, pointing to future research directions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Martin Obaidi (13 papers)
  2. Jil Klünder (27 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.