Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model reduction in acoustic inversion by artificial neural network (2105.02225v2)

Published 5 May 2021 in eess.IV, cs.SD, eess.AS, physics.comp-ph, and q-bio.QM

Abstract: In ultrasound tomography, the speed of sound inside an object is estimated based on acoustic measurements carried out by sensors surrounding the object. An accurate forward model is a prominent factor for high-quality image reconstruction, but it can make computations far too time-consuming in many applications. Using approximate forward models, it is possible to speed up the computations, but the quality of the reconstruction may have to be compromised. In this paper, a neural network -based approach is proposed, that can compensate for modeling errors caused by the approximate forward models. The approach is tested with various different imaging scenarios in a simulated two-dimensional domain. The results show that with fairly small training datasets, the proposed approach can be utilized to approximate the modelling errors, and to significantly improve the image reconstruction quality in ultrasound tomography, compared to commonly used inversion algorithms.

Citations (7)

Summary

We haven't generated a summary for this paper yet.