Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Streaming approximation resistance of every ordering CSP (2105.01782v3)

Published 4 May 2021 in cs.DS and cs.CC

Abstract: An ordering constraint satisfaction problem (OCSP) is defined by a family $\mathcal{F}$ of predicates mapping permutations on ${1,\ldots,k}$ to ${0,1}$. An instance of Max-OCSP($\mathcal{F}$) on $n$ variables consists of a list of constraints, each consisting of a predicate from $\mathcal{F}$ applied on $k$ distinct variables. The goal is to find an ordering of the $n$ variables that maximizes the number of constraints for which the induced ordering on the $k$ variables satisfies the predicate. OCSPs capture well-studied problems including `maximum acyclic subgraph' (MAS) and "maximum betweenness". In this work, we consider the task of approximating the maximum number of satisfiable constraints in the (single-pass) streaming setting, when an instance is presented as a stream of constraints. We show that for every $\mathcal{F}$, Max-OCSP($\mathcal{F}$) is approximation-resistant to $o(n)$-space streaming algorithms, i.e., algorithms using $o(n)$ space cannot distinguish streams where almost every constraint is satisfiable from streams where no ordering beats the random ordering by a noticeable amount. This space bound is tight up to polylogarithmic factors. In the case of MAS our result shows that for every $\epsilon>0$, MAS is not $(1/2+\epsilon)$-approximable in $o(n)$ space. The previous best inapproximability result, due to Guruswami and Tao (APPROX'19), only ruled out $3/4$-approximations in $o(\sqrt n)$ space. Our results build on a recent work of Chou, Golovnev, Sudan, Velingker, and Velusamy (STOC'22), who provide a tight, linear-space inapproximability theorem for a broad class of "standard" (i.e., non-ordering) constraint satisfaction problems (CSPs) over arbitrary (finite) alphabets. We construct a family of appropriate standard CSPs from any given OCSP, apply their hardness result to this family of CSPs, and then convert back to our OCSP.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com