Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modules for algebraic groups with finitely many orbits on totally singular 2-spaces (2105.01431v3)

Published 4 May 2021 in math.GR

Abstract: This is the author's second paper treating the double coset problem for classical groups. Let $G$ be an algebraic group over an algebraically closed field $K$. The double coset problem consists of classifying the pairs $H,J$ of closed connected subgroups of $G$ with finitely many $(H,J)$-double cosets in $G$. The critical setup occurs when one of $H,J$, say $H$, is reductive, and $J$ is a parabolic subgroup. Assume that $G$ is a classical group, $H$ is simple and $J$ is a maximal parabolic $P_k$, the stabilizer of a totally singular $k$-space. Then most candidates have $k=1$ or $k=2$. The case $k=1$ was solved in a previous paper and here we deal with $k=2$. We solve this case by determining all faithful irreducible self-dual $H$-modules $V$, such that $H$ has finitely may orbits on totally singular $2$-spaces of $V$.

Summary

We haven't generated a summary for this paper yet.