Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Overview of Laser Injection against Embedded Neural Network Models (2105.01403v1)

Published 4 May 2021 in cs.CR and cs.AI

Abstract: For many IoT domains, Machine Learning and more particularly Deep Learning brings very efficient solutions to handle complex data and perform challenging and mostly critical tasks. However, the deployment of models in a large variety of devices faces several obstacles related to trust and security. The latest is particularly critical since the demonstrations of severe flaws impacting the integrity, confidentiality and accessibility of neural network models. However, the attack surface of such embedded systems cannot be reduced to abstract flaws but must encompass the physical threats related to the implementation of these models within hardware platforms (e.g., 32-bit microcontrollers). Among physical attacks, Fault Injection Analysis (FIA) are known to be very powerful with a large spectrum of attack vectors. Most importantly, highly focused FIA techniques such as laser beam injection enable very accurate evaluation of the vulnerabilities as well as the robustness of embedded systems. Here, we propose to discuss how laser injection with state-of-the-art equipment, combined with theoretical evidences from Adversarial Machine Learning, highlights worrying threats against the integrity of deep learning inference and claims that join efforts from the theoretical AI and Physical Security communities are a urgent need.

Citations (8)

Summary

We haven't generated a summary for this paper yet.