Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Multiple Model Multiple Hypothesis Tracking (2105.01379v1)

Published 4 May 2021 in cs.IT and math.IT

Abstract: This paper considers the data association problem for multi-target tracking. Multiple hypothesis tracking is a popular algorithm for solving this problem but it is NP-hard and is is quite complicated for a large number of targets or for tracking maneuvering targets. To improve tracking performance and enhance robustness, we propose a randomized multiple model multiple hypothesis tracking method, which has three distinctive advantages. First, it yields a randomized data association solution which maximizes the expectation of the logarithm of the posterior probability and can be solved efficiently by linear programming. Next, the state estimation performance is improved by the random coefficient matrices Kalman filter, which mitigates the difficulty introduced by randomized data association, i.e., where the coefficient matrices of the dynamic system are random. Third, the probability that the target follows a specific dynamic model is derived by jointly optimizing the multiple possible models and data association hypotheses, and it does not require prior mode transition probabilities. Thus, it is more robust for tracking multiple maneuvering targets. Simulations demonstrate the efficiency and superior results of the proposed algorithm over interacting multiple model multiple hypothesis tracking.

Summary

We haven't generated a summary for this paper yet.