Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance and Energy-Aware Bi-objective Tasks Scheduling for Cloud Data Centers (2105.00843v1)

Published 25 Apr 2021 in cs.DC, cs.AI, and cs.NE

Abstract: Cloud computing enables remote execution of users tasks. The pervasive adoption of cloud computing in smart cities services and applications requires timely execution of tasks adhering to Quality of Services (QoS). However, the increasing use of computing servers exacerbates the issues of high energy consumption, operating costs, and environmental pollution. Maximizing the performance and minimizing the energy in a cloud data center is challenging. In this paper, we propose a performance and energy optimization bi-objective algorithm to tradeoff the contradicting performance and energy objectives. An evolutionary algorithm-based multi-objective optimization is for the first time proposed using system performance counters. The performance of the proposed model is evaluated using a realistic cloud dataset in a cloud computing environment. Our experimental results achieve higher performance and lower energy consumption compared to a state of the art algorithm.

Citations (11)

Summary

We haven't generated a summary for this paper yet.