Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AMMU : A Survey of Transformer-based Biomedical Pretrained Language Models (2105.00827v2)

Published 16 Apr 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Transformer-based pretrained LLMs (PLMs) have started a new era in modern NLP. These models combine the power of transformers, transfer learning, and self-supervised learning (SSL). Following the success of these models in the general domain, the biomedical research community has developed various in-domain PLMs starting from BioBERT to the latest BioELECTRA and BioALBERT models. We strongly believe there is a need for a survey paper that can provide a comprehensive survey of various transformer-based biomedical pretrained LLMs (BPLMs). In this survey, we start with a brief overview of foundational concepts like self-supervised learning, embedding layer and transformer encoder layers. We discuss core concepts of transformer-based PLMs like pretraining methods, pretraining tasks, fine-tuning methods, and various embedding types specific to biomedical domain. We introduce a taxonomy for transformer-based BPLMs and then discuss all the models. We discuss various challenges and present possible solutions. We conclude by highlighting some of the open issues which will drive the research community to further improve transformer-based BPLMs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (137)

Summary

We haven't generated a summary for this paper yet.