Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Properties of 2D Stochastic Navier-Stokes Equations with Time-Periodic Forcing and Degenerate Stochastic Forcing (2105.00598v1)

Published 3 May 2021 in math.DS and math.PR

Abstract: We consider the incompressible 2D Navier-Stokes equations with periodic boundary conditions driven by a deterministic time periodic forcing and a degenerate stochastic forcing. We show that the system possesses a unique ergodic periodic invariant measure which is exponentially mixing under a Wasserstein metric. We also prove the weak law of large numbers for the continuous time inhomogeneous solution process. In addition, we obtain the weak law of large numbers and central limit theorem by restricting the inhomogeneous solution process to periodic times. The results are independent of the strength of the noise and hold true for any value of viscosity with a lower bound $\nu_1$ characterized by the Grashof number $G_1$ associated with the deterministic forcing. In the laminar case, there is a larger lower bound $\nu_2$ of the viscosity characterized by the Grashof number $G_2$ associated with both the deterministic and random forcing. We prove that in this laminar case, the system has trivial dynamics for any viscosity larger than $\nu_2$ by demonstrating the existence of a unique globally exponentially stable random periodic solution that supports the unique periodic invariant measure.

Summary

We haven't generated a summary for this paper yet.