Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Triangle Centrality (2105.00110v3)

Published 30 Apr 2021 in cs.DS, cs.DC, and cs.SI

Abstract: Triangle centrality is introduced for finding important vertices in a graph based on the concentration of triangles surrounding each vertex. It has the distinct feature of allowing a vertex to be central if it is in many triangles or none at all. We show experimentally that triangle centrality is broadly applicable to many different types of networks. Our empirical results demonstrate that 30% of the time triangle centrality identified central vertices that differed with those found by five well-known centrality measures, which suggests novelty without being overly specialized. It is also asymptotically faster to compute on sparse graphs than all but the most trivial of these other measures. We introduce optimal algorithms that compute triangle centrality in $O(m\bar\delta)$ time and $O(m+n)$ space, where $\bar\delta\le O(\sqrt{m})$ is the $\textit{average degeneracy}$ introduced by Burkhardt, Faber, and Harris (2020). In practical applications, $\bar\delta$ is much smaller than $\sqrt{m}$ so triangle centrality can be computed in nearly linear time. On a Concurrent Read Exclusive Write (CREW) Parallel Random Access Machine (PRAM), we give a near work-optimal parallel algorithm that takes $O(\log n)$ time using $O(m\sqrt{m})$ CREW PRAM processors. In MapReduce, we show it takes four rounds using $O(m\sqrt{m})$ communication bits and is therefore optimal. We also derive a linear algebraic formulation of triangle centrality which can be computed in $O(m\bar\delta)$ time on sparse graphs.

Citations (15)

Summary

We haven't generated a summary for this paper yet.