Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Response Quality with Backward Reasoning in Open-domain Dialogue Systems (2105.00079v1)

Published 30 Apr 2021 in cs.CL

Abstract: Being able to generate informative and coherent dialogue responses is crucial when designing human-like open-domain dialogue systems. Encoder-decoder-based dialogue models tend to produce generic and dull responses during the decoding step because the most predictable response is likely to be a non-informative response instead of the most suitable one. To alleviate this problem, we propose to train the generation model in a bidirectional manner by adding a backward reasoning step to the vanilla encoder-decoder training. The proposed backward reasoning step pushes the model to produce more informative and coherent content because the forward generation step's output is used to infer the dialogue context in the backward direction. The advantage of our method is that the forward generation and backward reasoning steps are trained simultaneously through the use of a latent variable to facilitate bidirectional optimization. Our method can improve response quality without introducing side information (e.g., a pre-trained topic model). The proposed bidirectional response generation method achieves state-of-the-art performance for response quality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ziming Li (44 papers)
  2. Julia Kiseleva (33 papers)
  3. Maarten de Rijke (261 papers)
Citations (12)