Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 195 tok/s Pro
2000 character limit reached

An integration by parts formula for the bilinear form of the hypersingular boundary integral operator for the transient heat equation in three spatial dimensions (2104.15024v3)

Published 30 Apr 2021 in math.NA and cs.NA

Abstract: While an integration by parts formula for the bilinear form of the hypersingular boundary integral operator for the transient heat equation in three spatial dimensions is available in the literature, a proof of this formula seems to be missing. Moreover, the available formula contains an integral term including the time derivative of the fundamental solution of the heat equation, whose interpretation is difficult at second glance. To fill these gaps we provide a rigorous proof of a general version of the integration by parts formula and an alternative representation of the mentioned integral term, which is valid for a certain class of functions including the typical tensor-product discretization spaces.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.