Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Free Quantum Control with Reinforcement Learning (2104.14539v2)

Published 29 Apr 2021 in quant-ph

Abstract: Model bias is an inherent limitation of the current dominant approach to optimal quantum control, which relies on a system simulation for optimization of control policies. To overcome this limitation, we propose a circuit-based approach for training a reinforcement learning agent on quantum control tasks in a model-free way. Given a continuously parameterized control circuit, the agent learns its parameters through trial-and-error interaction with the quantum system, using measurement outcomes as the only source of information about the quantum state. Focusing on control of a harmonic oscillator coupled to an ancilla qubit, we show how to reward the learning agent using measurements of experimentally available observables. We train the agent to prepare various non-classical states using both unitary control and control with adaptive measurement-based quantum feedback, and to execute logical gates on encoded qubits. This approach significantly outperforms widely used model-free methods in terms of sample efficiency. Our numerical work is of immediate relevance to superconducting circuits and trapped ions platforms where such training can be implemented in experiment, allowing complete elimination of model bias and the adaptation of quantum control policies to the specific system in which they are deployed.

Summary

We haven't generated a summary for this paper yet.