Papers
Topics
Authors
Recent
2000 character limit reached

Intrinsic Diophantine Approximation for overlapping iterated function systems

Published 29 Apr 2021 in math.NT and math.DS | (2104.14249v1)

Abstract: In this paper we study a family of limsup sets that are defined using iterated function systems. Our main result is an analogue of Khintchine's theorem for these sets. We then apply this result to the topic of intrinsic Diophantine Approximation on self-similar sets. In particular, we define a new height function for an element of $\mathbb{Q}d$ contained in a self-similar set in terms of its eventually periodic representations. For limsup sets defined with respect to this height function, we obtain a detailed description of their metric properties. The results of this paper hold in arbitrary dimensions and without any separation conditions on the underlying iterated function system.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.