Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Stopping via Randomized Neural Networks

Published 28 Apr 2021 in stat.ML, cs.LG, cs.NA, math.NA, math.PR, and q-fin.CP | (2104.13669v4)

Abstract: This paper presents the benefits of using randomized neural networks instead of standard basis functions or deep neural networks to approximate the solutions of optimal stopping problems. The key idea is to use neural networks, where the parameters of the hidden layers are generated randomly and only the last layer is trained, in order to approximate the continuation value. Our approaches are applicable to high dimensional problems where the existing approaches become increasingly impractical. In addition, since our approaches can be optimized using simple linear regression, they are easy to implement and theoretical guarantees can be provided. We test our approaches for American option pricing on Black--Scholes, Heston and rough Heston models and for optimally stopping a fractional Brownian motion. In all cases, our algorithms outperform the state-of-the-art and other relevant machine learning approaches in terms of computation time while achieving comparable results. Moreover, we show that they can also be used to efficiently compute Greeks of American options.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.