Studies of normalized solutions to Schrödinger equations with Sobolev critical exponent and combined nonlinearities (2104.12997v2)
Abstract: We consider the Sobolev critical Schr\"{o}dinger equation with combined nonlinearities \begin{equation*} \begin{cases} -\Delta u=\lambda u+|u|{2*-2}u+\mu|u|{q-2}u,\ \ x\in\mathbb{R}{N},\ u\in H1(\mathbb{R}N),\ \int_{\mathbb{R}N}|u|2dx=a, \end{cases} \end{equation*} where $N\geq 3$, $\mu>0$, $\lambda\in \mathbb{R}$, $a>0$ and $q\in (2,2*)$. We prove in this paper (1) Multiplicity and stability of solutions for $q\in (2,2+\frac{4}{N})$ and $\mu a{\frac{q(1-\gamma_q)}{2}}\leq (2K){\frac{q\gamma_q-2}{2^-2}}$ with $\gamma_q:=\frac{N}{2}-\frac{N}{q}$ and $K$ being some positive constant. This result extends the results obtained in Jeanjean et al. \cite{JEANJEAN-JENDREJ} and Jeanjean and Le \cite{Jeanjean-Le} for the case $\mu a{\frac{q(1-\gamma_q)}{2}}<(2K){\frac{q\gamma_q-2}{2^-2}}$ to the case $\mu a{\frac{q(1-\gamma_q)}{2}}\leq (2K){\frac{q\gamma_q-2}{2^-2}}$. (2) Nonexistence of ground states for $q=2+\frac{4}{N}$ and $\mu a{\frac{q(1-\gamma_q)}{2}}\geq\bar{a}_N$ with $\bar{a}_N$ being some positive constant. We give a new proof to this result different with Wei and Wu \cite{Wei-Wu 2021}.