Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inf-Sup-Constant-Free State Error Estimator for Model Order Reduction of Parametric Systems in Electromagnetics (2104.12802v3)

Published 26 Apr 2021 in math.NA and cs.NA

Abstract: A reliable model order reduction process for parametric analysis in electromagnetics is detailed. Special emphasis is placed on certifying the accuracy of the reduced-order model. For this purpose, a sharp state error estimator is proposed. Standard a posteriori state error estimation for model order reduction relies on the inf-sup constant. For parametric systems, the inf-sup constant is parameter-dependent. The a posteriori error estimation for systems with very small or vanishing inf-sup constant poses a challenge, since it is inversely proportional to the inf-sup constant, resulting in rather useless, overly pessimistic error estimators. Such systems appear in electromagnetics since the inf-sup constant values are close to zero at points close to resonant frequencies, where they eventually vanish. We propose a novel a posteriori state error estimator which avoids the calculation of the inf-sup constant. The proposed state error estimator is compared with the standard error estimator and a recently proposed one in the literature. It is shown that our proposed error estimator outperforms both existing estimators. Numerical experiments are performed on real-life microwave devices such as narrowband and wideband antennas, two types of dielectric resonator filters as well as a dual-mode waveguide filter. These examples show the capabilities and efficiency of the proposed methodology.

Citations (8)

Summary

We haven't generated a summary for this paper yet.