Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 33 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 483 tok/s Pro
Kimi K2 242 tok/s Pro
2000 character limit reached

Exploiting Transitivity Constraints for Entity Matching in Knowledge Graphs (2104.12589v1)

Published 22 Apr 2021 in cs.AI, cs.DL, and cs.SI

Abstract: The goal of entity matching in knowledge graphs is to identify entities that refer to the same real-world objects using some similarity metric. The result of entity matching can be seen as a set of entity pairs interpreted as the same-as relation. However, the identified set of pairs may fail to satisfy some structural properties, in particular transitivity, that are expected from the same-as relation. In this work, we show that an ad-hoc enforcement of transitivity, i.e. taking the transitive closure, on the identified set of entity pairs may decrease precision dramatically. We therefore propose a methodology that starts with a given similarity measure, generates a set of entity pairs that are identified as referring to the same real-world objects, and applies the cluster editing algorithm to enforce transitivity without adding many spurious links, leading to overall improved performance.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.