Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inner-ear Augmented Metal Artifact Reduction with Simulation-based 3D Generative Adversarial Networks (2104.12510v1)

Published 26 Apr 2021 in cs.CV

Abstract: Metal Artifacts creates often difficulties for a high quality visual assessment of post-operative imaging in {c}omputed {t}omography (CT). A vast body of methods have been proposed to tackle this issue, but {these} methods were designed for regular CT scans and their performance is usually insufficient when imaging tiny implants. In the context of post-operative high-resolution {CT} imaging, we propose a 3D metal {artifact} reduction algorithm based on a generative adversarial neural network. It is based on the simulation of physically realistic CT metal artifacts created by cochlea implant electrodes on preoperative images. The generated images serve to train a 3D generative adversarial networks for artifacts reduction. The proposed approach was assessed qualitatively and quantitatively on clinical conventional and cone-beam CT of cochlear implant postoperative images. These experiments show that the proposed method {outperforms other} general metal artifact reduction approaches.

Citations (8)

Summary

We haven't generated a summary for this paper yet.