Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Additive Schwarz methods for serendipity elements (2104.11842v3)

Published 23 Apr 2021 in math.NA and cs.NA

Abstract: While solving Partial Differential Equations (PDEs) with finite element methods (FEM), serendipity elements allow us to obtain the same order of accuracy as rectangular tensor-product elements with many fewer degrees of freedom (DOFs). To realize the possible computational savings, we develop some additive Schwarz methods (ASM) based on solving local patch problems. Adapting arguments from Pavarino for the tensor-product case, we prove that patch smoothers give conditioning estimates independent of the polynomial degree for a model problem. We also combine this with a low-order global operator to give an optimal two-grid method, with conditioning estimates independent of the mesh size and polynomial degree. The theory holds for serendipity elements in two and three dimensions, and can be extended to full multigrid algorithms. Numerical experiments using Firedrake and PETSc confirm this theory and demonstrate efficiency relative to standard elements.

Summary

We haven't generated a summary for this paper yet.