Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Social Influence Prediction with Train and Test Time Augmentation for Graph Neural Networks (2104.11641v1)

Published 23 Apr 2021 in cs.SI

Abstract: Data augmentation has been widely used in machine learning for natural language processing and computer vision tasks to improve model performance. However, little research has studied data augmentation on graph neural networks, particularly using augmentation at both train- and test-time. Inspired by the success of augmentation in other domains, we have designed a method for social influence prediction using graph neural networks with train- and test-time augmentation, which can effectively generate multiple augmented graphs for social networks by utilising a variational graph autoencoder in both scenarios. We have evaluated the performance of our method on predicting user influence on multiple social network datasets. Our experimental results show that our end-to-end approach, which jointly trains a graph autoencoder and social influence behaviour classification network, can outperform state-of-the-art approaches, demonstrating the effectiveness of train- and test-time augmentation on graph neural networks for social influence prediction. We observe that this is particularly effective on smaller graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hongbo Bo (5 papers)
  2. Ryan McConville (29 papers)
  3. Jun Hong (13 papers)
  4. Weiru Liu (28 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.