Papers
Topics
Authors
Recent
Search
2000 character limit reached

Projections in Lipschitz-free spaces induced by group actions

Published 23 Apr 2021 in math.FA | (2104.11519v1)

Abstract: We show that given a compact group $G$ acting continuously on a metric space $M$ by bi-Lipschitz bijections with uniformly bounded norms, the Lipschitz-free space over the space of orbits $M/G$ (endowed with Hausdorff distance) is complemented in the Lipschitz-free space over $M$. We also investigate the more general case when $G$ is amenable, locally compact or SIN and its action has bounded orbits. Then we get that the space of Lipschitz functions $Lip_0(M/G)$ is complemented in $Lip_0(M)$. Moreover, if the Lipschitz-free space over $M$, $F(M)$, is complemented in its bidual, several sufficient conditions on when $F(M/G)$ is complemented in $F(M)$ are given. Some applications are discussed. The paper contains preliminaries on projections induced by actions of amenable groups on general Banach spaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.