Projections in Lipschitz-free spaces induced by group actions
Abstract: We show that given a compact group $G$ acting continuously on a metric space $M$ by bi-Lipschitz bijections with uniformly bounded norms, the Lipschitz-free space over the space of orbits $M/G$ (endowed with Hausdorff distance) is complemented in the Lipschitz-free space over $M$. We also investigate the more general case when $G$ is amenable, locally compact or SIN and its action has bounded orbits. Then we get that the space of Lipschitz functions $Lip_0(M/G)$ is complemented in $Lip_0(M)$. Moreover, if the Lipschitz-free space over $M$, $F(M)$, is complemented in its bidual, several sufficient conditions on when $F(M/G)$ is complemented in $F(M)$ are given. Some applications are discussed. The paper contains preliminaries on projections induced by actions of amenable groups on general Banach spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.