Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continental-scale land cover mapping at 10 m resolution over Europe (ELC10) (2104.10922v1)

Published 22 Apr 2021 in cs.CV and cs.LG

Abstract: Widely used European land cover maps such as CORINE are produced at medium spatial resolutions (100 m) and rely on diverse data with complex workflows requiring significant institutional capacity. We present a high resolution (10 m) land cover map (ELC10) of Europe based on a satellite-driven machine learning workflow that is annually updatable. A Random Forest classification model was trained on 70K ground-truth points from the LUCAS (Land Use/Cover Area frame Survey) dataset. Within the Google Earth Engine cloud computing environment, the ELC10 map can be generated from approx. 700 TB of Sentinel imagery within approx. 4 days from a single research user account. The map achieved an overall accuracy of 90% across 8 land cover classes and could account for statistical unit land cover proportions within 3.9% (R2 = 0.83) of the actual value. These accuracies are higher than that of CORINE (100 m) and other 10-m land cover maps including S2GLC and FROM-GLC10. We found that atmospheric correction of Sentinel-2 and speckle filtering of Sentinel-1 imagery had minimal effect on enhancing classification accuracy (< 1%). However, combining optical and radar imagery increased accuracy by 3% compared to Sentinel-2 alone and by 10% compared to Sentinel-1 alone. The conversion of LUCAS points into homogenous polygons under the Copernicus module increased accuracy by <1%, revealing that Random Forests are robust against contaminated training data. Furthermore, the model requires very little training data to achieve moderate accuracies - the difference between 5K and 50K LUCAS points is only 3% (86 vs 89%). At 10-m resolution, the ELC10 map can distinguish detailed landscape features like hedgerows and gardens, and therefore holds potential for aerial statistics at the city borough level and monitoring property-level environmental interventions (e.g. tree planting).

Citations (62)

Summary

We haven't generated a summary for this paper yet.