Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bearings Fault Detection Using Hidden Markov Models and Principal Component Analysis Enhanced Features (2104.10519v1)

Published 21 Apr 2021 in cs.LG and cs.LO

Abstract: Asset health monitoring continues to be of increasing importance on productivity, reliability, and cost reduction. Early Fault detection is a keystone of health management as part of the emerging Prognostics and Health Management (PHM) philosophy. This paper proposes a Hidden Markov Model (HMM) to assess the machine health degradation. using Principal Component Analysis (PCA) to enhance features extracted from vibration signals is considered. The enhanced features capture the second order structure of the data. The experimental results based on a bearing test bed show the plausibility of the proposed method.

Citations (6)

Summary

We haven't generated a summary for this paper yet.